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Transformer-based Large Language Models (LLMs) have recently in-
creased in popularity, in part due their impressive performance on a
number of language tasks. While LLMs can produce human-like writing,
the extent to which these models can learn to predict spoken language
in natural interaction remains unclear. This is a non-trivial question, as
spoken and written language differ in syntax, pragmatics, and norms that
interlocutors follow. Previous work suggests that while LLMs may de-
velop an understanding of linguistic rules based on statistical regularities,
they fail to acquire the knowledge required for language use. This implies
that LLMs may not learn the normative structure underlying interactive
spoken language, but may instead only model superficial regularities in
speech. In this paper, we aim to evaluate LLMs as models of spoken
dialogue. Specifically, we investigate whether LLMs can learn that the
identity of a speaker in spoken dialogue influences what is likely to be
said. To answer this question, we first fine-tuned two variants of a specific
LLM (GPT-2) on transcripts of natural spoken dialogue in English. Then
we used these models to compute surprisal values for two-turn sequences
with the same first-turn but different second-turn speakers and compared
the output to human behavioral data. While the predictability of words in
all fine-tuned models was influenced by speaker identity information, the
models did not replicate humans’ use of this information. Our findings
suggest that although LLMs may learn to generate text conforming to
normative linguistic structure, they do not (yet) faithfully replicate human
behavior in natural conversation.
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1 | INTRODUCTION28

Informal spoken conversation is one of the most ubiquitous ways through which we communicate with each other. In29

such conversations, participants alternate between speaker and listener roles, the assignment of which is locally managed30

by a well-documented set of rules (Levinson, 1983; Sacks et al., 1974). It is therefore tempting for dialogue researchers to31

model, analyze, and automate spoken dialogue with recently developed and highly effective transformer-based Large32

Language Models (LLMs).33

LLMs have provided a breakthrough in modeling sequential dependencies in language (Vaswani et al., 2017), enabling34

these models to achieve human-like performance on various language tasks and quickly gain widespread popularity. For35

example, models such as GPT-4 Omni, Meta’s Llama, and Google’s Gemini now boast multi-modal processing capabilities36

as well as the ability to use voice to engage in back and forth conversations (Achiam et al., 2023; Touvron et al., 2023;37

Reid et al., 2024). These LLMs are increasingly being utilized in a diverse range of applications, such as assistance in38

academic and scientific work (Lund and Wang, 2023; Kung et al., 2023), influencing the media landscape (Cheng, 2024),39

and serving as programming assistants (e.g., OpenAI’s Codex) (Finnie-Ansley et al., 2022). Modern LLMs are also40

continuously refined through various techniques (e.g., Reinforcement Learning from Human Feedback) to better align41

their responses with human preferences (Kirk et al., 2023). For example, LLMs are now capable of producing articles42

that are indistinguishable from those produced by humans (Kreps et al., 2022; Dou et al., 2022). Despite some evidence43

to the contrary, e.g., that LLMs simply mirror the intelligence of the interviewer (Sejnowski, 2023), these improvements44

have fueled speculation that LLMs might pass the Turing test i.e., their ability to generate human-like language implies an45

underlying intelligent thought process indistinguishable from that of humans (Mahowald et al., 2024).46

Previous research into the ability of LLMs to replicate human language processing has yielded mixed results. On the47

one hand, current state-of-the-art language model outputs correlate with human neural data during language comprehension48

tasks. LLMs and human brains seem to predict words similarly from the preceding context: brain activity to specific49

words, as measured by a variety of neuroimaging techniques, is correlated with LLM-generated word surprisal (i.e. the50

probability of a word given its context) (Caucheteux and King, 2022; Michaelov et al., 2024; Caucheteux et al., 2021). In51

some cases, LLM generated lexical predictions more closely match human brain activity than predictions made by humans52

(Michaelov et al., 2022). These findings suggest that predictive processes underlying human language comprehension53

may be more reliant on the surface-level statistics of language than previously thought. When compared with human54

behavioral data, however, LLM performance diverges from that of humans. For example, LLMs with lower perplexity, a55

metric indicating a better fit to training data, actually provided a worse fit to human reading times (Oh et al., 2022; Oh and56

Schuler, 2023), suggesting that LLM surprisal estimates differ from human-like expectations. Furthermore, while LLMs57

rely on superficial statistical patterns in language, humans additionally draw on social norms, and reason about others’58

mental states, when producing language. LLMs fail to grasp reasoning functions and instead learn the statistical features59

of logical reasoning problems (Zhang et al., 2023; Mahowald et al., 2013). Similarly, LLMs do not perform as well as60

humans when asked to reason about the mental states of others, indicating that statistical learning from language may not61

be sufficient for belief attribution (Trott et al., 2023).62

The extent to which LLMs replicate human language processing has been mostly studied in the context of monologic63

sentence comprehension experiments with models that, we assume, are trained primarily on written language (Dingemanse64

and Liesenfeld, 2022). These experimental contexts and the data on which LLMs are trained differ significantly from65

the way in which language occurs in natural conversation. It is therefore unclear how well LLMs generalize to spoken66

dialogue. In this context, it is useful to distinguish between spoken-first and written-first language. Spoken-first language67

is generated by a speaker (and then potentially transcribed), while written-first language is generated by an author (and68

then potentially converted to speech). These two modalities have different affordances. Writers have time to construct and69
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revise their statements, while speakers have limited time to plan and produce their turns. Additionally, writers can rely70

on the fact that readers can re-read statements, while speakers must consider that listeners retain limited information.71

Speakers can also receive immediate feedback from listeners, whereas writers receive limited and delayed feedback from72

readers. Comparing written-first to spoken-first dialogue highlights key differences. For example, there is evidence73

that written responses are shorter and more diverse than spoken responses (Drieman, 1962). A comparative analysis of74

movie subtitles (written-first language) with natural dialogue (spoken-first language) found that written language has less75

frequent and more negative verbal feedback signals than spoken-first language (Pilan et al., 2024). This difference matters76

when fine-tuning large language models: when two conversational agents trained on subtitles were asked to interact, they77

produced feedback in rates and valence that matched the subtitle corpora instead of the pattern found in human interaction78

(Pilan et al., 2024). Even when trained on purely spoken dialogue, LLMs are able to mimic some paralinguistic features,79

such as silence and laughter, but lack the ability to consistently produce semantically coherent speech (Nguyen et al.,80

2023). Taken together, this research presents an important unanswered question: how well can LLMs predict language in81

the context of spoken dialogue?82

One critical aspect of spoken conversations is the ability of listeners to identify who is speaking. We very rapidly83

incorporate speaker identity into the construction of meaning and the prediction of upcoming words (Van Berkum et al.,84

2008; Warnke and de Ruiter, 2023). While engaging in a conversation, humans draw on those lexical predictions to85

anticipate when a turn will end (De Ruiter et al., 2006; Magyari and De Ruiter, 2012), critically allowing them to begin86

their turn at the appropriate time. Warnke (2024) explicitly investigated listeners’ use of speaker identity and preceding87

context to predict the end of an incoming turn. The author manipulated the plausibility of conversational turns by changing88

the speaker identity while keeping the linguistic content the same. Participants listened to two-turn sequences and pressed89

a button when they believed the second turn was going to end. The study found that participants took longer to anticipate90

the end of the turn in the conditions in which the speaker identity was manipulated compared to the congruent condition,91

suggesting that listeners use speaker identity to predict upcoming turns and their endings.92

In the current study, we leverage the design and stimuli from Warnke (2024) to assess whether LLMs can replicate the93

human ability to use information about who is speaking to predict upcoming language in conversation. This comparison is94

crucial as it provides a benchmark for evaluating LLM performance against established human behaviors in dialogue pro-95

cessing. Specifically, we seek to determine whether LLMs produce higher surprisal values for turns spoken by incongruent96

speakers compared to congruent speakers, indicating an understanding of spoken dialogue structure. Additionally, we97

explore the impact of fine-tuning dataset size on model performance, and the influence of speaker representation (implicit98

vs. explicit) on LLM output. This comprehensive approach aims to provide insights into the capabilities and limitations99

of LLMs in predicting spoken dialogue, thereby bridging the gap between written and spoken language processing.100

2 | METHODS101

2.1 | Modeling102

2.1.1 | Generative Pre-trained Transformer Models103

Transformers provide a breakthrough in capturing long-range dependencies in language, achieving human-like performance104

on a variety of language tasks (Vaswani et al., 2017). This is largely enabled by their ability to use attention - a mechanism105

to recognize the relative importance of words in a context when predicting upcoming words. Attention, which can be of106

different types (e.g., multi-headed dot-product attention), has allowed transformers to use context more effectively and107

surpass the previous state-of-the-art (e.g., Recurrent Neural Networks) on text-based language modeling tasks (Karita108
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et al., 2019). Additionally, word and positional embeddings are crucial components of transformers. Word embeddings109

convert words into multidimensional vectors, capturing their meanings based on context and relationships with other110

semantically similar words. Positional embeddings encode the position of each word in a sequence, allowing the model to111

maintain the order of words, which is vital for understanding syntax and meaning. Together, these embeddings enable112

transformers to process and interpret sequences of text effectively, capturing both the meaning of individual words and113

their arrangement within a sentence. While transformers were originally proposed as sequence-to-sequence models114

consisting of an encoder and decoder, modern LLMs typically use only the decoder component of the original architecture115

(Achiam et al., 2023). A defining characteristic of state-of-the-art LLMs is their autoregressive nature, meaning they116

only consider preceding words in the sequence when predicting the next word, similar to human language processing117

(Levinson and Torreira, 2015).118

Due to their popularity and ability to harness vast amounts of data, there have been frequent advances in LLMs that119

have significantly improved their performance across tasks compared to earlier variants (Yang et al., 2024b). For instance,120

Google’s LaMDA and Meta’s Llama models have substantially increased in size and capability compared to earlier models121

(Touvron et al., 2023; Cohen et al., 2022), while OpenAI’s GPT-4 has significantly more parameters than GPT-3 (Li122

et al., 2021). Some newer models (e.g., OpenAI’s GPT-4) now include multi-modal processing capabilities, accepting123

image and text inputs and producing text output. These typically operate on large context windows, such as 8,192 tokens124

for GPT-4 (Achiam et al., 2023) compared to 1,024 for GPT-2 (Radford et al., 2019), that allows them to capture much125

longer range dependencies in the input (Guo et al., 2022). These improvements have allowed state-of-the-art LLMs to126

outperform their predecessors in almost all text-based language tasks.127

Despite these advancements, we use OpenAI’s GPT-2, a model with significantly fewer parameters and a smaller128

pre-training corpus compared to state-of-the-art LLMs (Radford et al., 2019) for several reasons. First, using a smaller129

model provides foundational information critical for understanding more complex models. Previous research indicates that130

larger and more complex models do not always lead to better performance across tasks (Gholami, 2024), and that larger131

training datasets can lead to diminishing returns (Shumailov et al., 2023). While larger LLMs may better learn formal132

competence (i.e., knowledge of linguistic rules, patterns, and norms), they often fail to achieve functional competence (i.e.,133

the ability to use language in interaction), which depends on a host of non-linguistic capabilities that LLMs—regardless134

of size—struggle to achieve (Mahowald et al., 2024). Furthermore, state-of-the-art LLMs continue to hallucinate, reason135

poorly, and propagate bias when performing complex tasks (Achiam et al., 2023). Some studies even find that larger136

LLMs result in worse fits to human behavior (Oh et al., 2022). Thus, while it is possible that novel architectures and a137

greater number of parameters could enhance LLMs’ functional competence—and by extension, their ability to model138

spoken language—there is also evidence suggesting that larger models do not necessarily lead to improvements in these139

areas.140

Second, many state-of-the-art models, such as recent variants of GPT, are proprietary and not open-source, limiting141

their direct use in research (Liesenfeld and Dingemanse, 2024). These models do not provide direct probability or surprisal142

estimates for words; instead, such estimates must be measured indirectly by sampling sentence completions and analyzing143

the resultant distributions. In contrast, GPT-2 is open-source and integrated into popular machine learning libraries (e.g.,144

huggingface (Wolf et al., 2020)), making it a practical choice for our study.145

GPT-2 also requires fewer computational resources, making it more accessible for researchers without access to146

extensive computational infrastructure (Sathish et al., 2024). This allows for broader participation in research and easier147

replication of our results. We also make our methods1 and data2 open-source to and invite researchers to scale up this148

1Implementation of the LLMs used in this work can be found here: https://github.com/mumair01/GPT-Monologue-to-Dialogue
2Fine-tuned models, inference results, and additional project data can be found here: https://osf.io/fxn8y/?view_only=

9baf4033a2cb49cfaf107f9a753ab445

https://github.com/mumair01/GPT-Monologue-to-Dialogue
https://osf.io/fxn8y/?view_only=9baf4033a2cb49cfaf107f9a753ab445
https://osf.io/fxn8y/?view_only=9baf4033a2cb49cfaf107f9a753ab445


UMAIR ET AL. 5

work to more complex models (e.g., Meta’s LLama) as they become available.149

Further, most LLMs do not explicitly encode speaker identities, which are key when predicting words in spoken150

language. Instead, they treat speaker identity labels in transcripts as any other token. This implicit speaker representation151

may cause GPT-2 to struggle to learn that speaker identities are not words, but qualities that are present and relevant152

over the course of an entire turn. Therefore, we use two variants of GPT-2 in this work: one with implicit (GPT-2) and153

another with explicit (TurnGPT) speaker representations (Ekstedt and Skantze, 2020). TurnGPT augments GPT-2 by154

adding a third type of embedding, in addition to word and positional embeddings, to explicitly represent the speaker of155

each word in an input sequence. It was originally designed to predict Transition Relevance Places (TRPs) i.e., points in a156

turn where interlocutors may, but do not need to, start speaking. Since TurnGPT requires additional special tokens to157

represent speaker identities, it must be fine-tuned to accurately use speaker identity information. This implies that there158

was no pre-trained only (or null) version of TurnGPT. See Appendix A for a detailed explanation of the fine-tuning and159

inference procedures used in this work.160

2.1.2 | Fine-tuning161

Transformer-based models have demonstrated high performance when learning new tasks due to their capacity for162

transfer learning. Under this paradigm, models are first pre-trained on large datasets with data-rich tasks (e.g., next-word163

prediction) in an unsupervised fashion. This pre-training allows the model to gain general-purpose domain knowledge,164

which can then be enhanced and applied to specific tasks by fine-tuning on smaller, task-specific datasets (Raffel et al.,165

2020; Brown et al., 2020). This process of pre-training and fine-tuning enables a language model to achieve state-of-the-art166

performance on numerous language benchmarks (VM et al., 2024).167

Since we aim to investigate whether LLMs can generalize to natural spoken dialogue, we fine-tuned our models168

using transcripts of naturalistic conversations from the In Conversation Corpus (ICC)3. Each conversation in the ICC is169

approximately 25 minutes long and features a pair of undergraduate students. Participants sat in two sound-proofed rooms170

separated by a glass window, communicated using a microphone and headset, and were recorded on separate channels171

for complete sound isolation. In half of the conversations, the participants were recruited separately and were strangers,172

while in the other half, they were recruited together and knew each other.173

We selected the ICC over publicly available dialogue corpora to maximize the naturalism and diversity of the turn-174

taking behaviors present in the fine-tuning data. While some open-source datasets are widely studied, well-annotated, and175

diligently transcribed, limitations of the data collection strategies affect the range and naturalism of behaviors exhibited176

during the interaction (Reece et al., 2023). For example, researchers often provide interlocutors with topics to elicit177

specific behaviors or to encourage more fluent conversation, which can limit the range of speech produced during the178

conversation.179

To ensure linguistic consistency, we filtered the ICC and only selected conversations spoken in American English.180

The language – or, more precisely, the interactive style associated with culture – can affect some aspects of turn-taking.181

The culture-invariant components of turn-taking include the mechanisms speakers and listeners can use to take or pass on182

turns (Stivers et al., 2009), as well as general patterns in the timing of turns (Schegloff, 1982). However, the specific183

manifestation, frequency, and appropriateness of different conversational behaviors can change from culture to culture.184

For example, approximately 21% of Korean turns were continuers (e.g. “mhm”), in contrast to only 9% of English turns185

(Dingemanse and Liesenfeld, 2022). In addition, Korean backchannels were more often produced in overlap with a186

3While the ICC is not publicly available due to restrictions imposed by the Tufts University’s IRB regulations, it has been used in previously
published research (Mertens, 2022; Warnke, 2022), and its protocol was reviewed and approved by the Tufts University’s IRB before data
collection. The Human Interaction Lab is actively working to meet IRB regulations to make the corpus publicly accessible in the future.
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concurrent turn.187

Our use of the ICC, a dialogue corpus, for fine-tuning LLMs requires qualification. First, the lack of transparency188

in state-of-the-art LLM training data raises concerns about data contamination and appropriate sources for fine-tuning189

(Balloccu et al., 2024). We assume most pre-training data for LLMs is written-first monologue data. Therefore, we190

fine-tune our model with spoken-first dialogue data for our dialogue-based task. If this decreases accuracy, it highlights191

the challenge of using monologue-trained models for dialogue tasks. The model may not be accustomed to dialogue192

structures, so adding dialogue data doesn’t necessarily improve predictions in dialogue contexts (Yang et al., 2024a; Sun193

et al., 2024). Second, since the fine-tuning data were spoken in American English, the LLMs in this study may predict194

specific turns (e.g., backchannels) at different rates than if they were fine-tuned on other data. However, the stimuli in this195

study are simple, two-turn sequences without backchannels or timing information, so we assume the exact language will196

not affect our results. Fine-tuning an LLM on a limited set of data from an under-resourced language (of which there197

are many (Besacier et al., 2014)) might result in an LLM that can replicate words but not the interaction style necessary198

for effective communication in those languages. Future research should investigate how the languages and cultures in199

training data affect LLM behavior.200

Five Conversations Twenty-eight Conversations
Turns Words Words/Turn Turns Words Words/Turn

Speaker 1 1,975 12,924 6.54 10,691 84,901 7.94
Speaker 2 1,916 15,884 8.04 10,412 85,076 7.96
Speaker 1 / Speaker 2 1.03 0.81 0.81 1.03 1.00 1.00

TA B L E 1 Distribution of words and turns by speaker in the fine-tuning datasets (five vs. twenty-eight conversations). Note
that while there are only two speaker labels (Speaker 1 and Speaker 2), each conversation features a unique set of participants.

Creating accurate and detailed verbatim transcripts of spoken dialogue is a notoriously painstaking and time consuming201

process (Tilley, 2003). Therefore, we investigated the amount of natural language data required for fine-tuning by using202

two datasets: one containing five conversations and another containing twenty-eight conversations from the ICC. We203

use ‘Five’ and ‘Twenty-eight’ to refer to these datasets in tables and figures. We transcribed an additional fourteen204

conversations for use as a validation set during fine-tuning. Note that the identity labels of Speakers 1 and 2 was effectively205

randomized between conversations (the first participant speaking in a conversation was labeled Speaker 1), and that206

each conversation featured a unique pair of interlocutors i.e., each interlocutor participated in exactly one conversation.207

To ensure that the two fine-tuning datasets did not substantially differ (which might affect model output), we analyzed208

the number of words, amount of turn-taking, and distribution of speaker transitions and holds in the datasets. First,209

to compare our datasets, we extracted all words from the training datasets to compare the frequency of words . Word210

frequencies were similar between the two datasets. The only notable difference between the two groups was the vocabulary211

size: the twenty-eight conversation dataset (3,886 words) was approximately 2.5 times larger than the five-conversation212

dataset (1,542 words). However, the words unique to the twenty-eight corpus (e.g., “exaggerate", “shady", “biography")213

composed only 8.90% of the total words spoken by interlocutors (see Appendix A for further details).214

Further, we compared the number of words and turns by speaker for each dataset to determine whether the models215

would learn coincidental differences in the turns produced by each speaker. Table 1 shows that both speakers contributed216

approximately equal number of turns in both datasets. However, in the five conversation set, Speaker 2 produced 1.1 more217

words per turn on average than Speaker 1. In contrast, Speaker 1 and 2 produced roughly the same number of words in218

the twenty-eight conversation set.219
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Datasets Transitions Holds
% of Total Turn-Pairs SP1 → SP2 SP2 → SP1 % of Total Turn-Pairs SP1 → SP1 SP2 → SP2

Five 81.42% 1582 (40.71%) 1582 (40.71%) 20.32% 390 (10.97%) 332 (9.34%)
Twenty-eight 79.83% 8413 (39.92%) 8413 (39.92%) 22.26% 2261 (11.85%) 1988 (10.42%)

TA B L E 2 Distribution of turn-pairs that have speaker transitions and or holds in each fine-tuning dataset (five versus
twenty-eight conversations). The percentages reflect the percentage of total turn-pairs within a particular dataset.

We also investigated the ratio of speaker transitions to speaker holds in both ICC datasets. As shown in Table 2, most220

turns involved speaker transitions, while only 20% were speaker continuations. Although identifying speaker transitions221

in the corpus is straightforward, detecting continuations — when a speaker resumes after a meaningful contribution222

known as a Turn Construction Unit (TCU) — is much more complex. In the ICC, speaker continuations are based on223

silence thresholds between consecutive turns by the same speaker.224

Despite minor differences between the training datasets, we are confident that they were sufficiently similar for225

fine-tuning our models. Note that we did not exclude any words (e.g., stop-words) from the fine-tuning datasets since226

we do not make any assumptions about the contribution of specific words to speaker-specific patterns. After training,227

we had five total models: GPT-2 and TurnGPT, both trained on the five and twenty-eight conversation datasets, and the228

pre-trained (or null) GPT-2 model.229

2.2 | Human Experimental Data230

For comparing the performance of the LLM models with that of human conversationalists, we used the stimuli and231

experimental setup from Warnke (2024). This study investigated whether listeners in dialogue can predict the speech act232

(or illocution, not to be confused with sentence type) of an upcoming turn. To assess the degree to which participants233

were able to predict the next turn, the authors leveraged the well-established task of turn-end anticipation (De Ruiter et al.,234

2006; Riest et al., 2015; Wesseling et al., 2006). In this task, participants listen to fragments of conversation and have to235

anticipate, either by button press or minimal vocalizations, when the turn they are listening to is going to end. In the236

study by Warnke (2024), the participants had to listen to two consecutive turns, and indicate per button press the end of237

the second turn. The authors’ motivation for using this task was that it has been shown to require on-the-fly language238

prediction processes in human listeners, and the temporal difference between the actual turn-end and the anticipated239

turn-end gives a reliable estimate of the predictability (for human listeners) of the content of the turn (De Ruiter et al.,240

2006; Riest et al., 2015; Magyari and De Ruiter, 2008, 2012; Magyari et al., 2014; Magyari, 2022; Levinson, 2016).241

The results showed that listeners more accurately predicted the ends of turns spoken by the “correct" speaker as242

compared to the “incorrect" speaker. This suggests that listeners use speaker identity representations to anticipate243

upcoming turns, as has been demonstrated in prior dialogue research (Warnke and de Ruiter, 2023; Metzing and Brennan,244

2003), as well as the sentence comprehension literature (Van Berkum et al., 2008). We used these experimental stimuli to245

investigate whether LLMs can accurately emulate human dialogue behavior. In this section, we describe how we leverage246

the methods and measures from Warnke (2024) in the current study.247

2.2.1 | Stimuli248

Warnke (2024) found that listeners use both the preceding context and identity of the speaker of the current turn to predict249

upcoming speech. In their study, participants listened to two-turn sequences and pressed a button at the moment that they250
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anticipated the second turn to end. This task has been shown to be sensitive to anticipatory processing in conversation251

(De Ruiter et al., 2006, see also discussion and references above). Stimuli belonged to one of six conditions in a two252

(speaker) by three (congruence) design, depending on the second turn in the two-turn sequence. The second turn differed253

in the identity of the speaker (same vs. different) and the plausibility of the turn by that speaker (congruent, incongruent,254

and violative). Congruent second turns were relatively plausible, i.e. spoken by the “correct" speaker. Incongruent second255

turns were not plausible given the preceding turn context and speaker identity. Specifically, they contained the same256

words as the congruent stimuli, except that they were spoken by the “wrong" speaker, which rendered them implausible.257

F I G U R E 1 Example of congruent, incongruent, and violative stimuli used by Warnke (2024).

Figure 1 displays one six-stimulus group. All stimuli in the group had the same first turn “Why’d you turn off the AC?".258

“I’m hot" was congruent in the same-speaker condition (spoken by Speaker 1) and incongruent in the different-speaker259

condition (spoken by Speaker 2). Similarly, “Sam did” was congruent in the different-speaker condition (spoken by260

Speaker 2) and incongruent in the same-speaker condition (Speaker 1). The turns “Yup” and “Sounds nice,” in Figure 1261

were violative since they were implausible regardless of the speaker. The advantage of this experimental design is that the262

congruence of the second turn changed while the linguistic content remained the same, thereby isolating the effect of263

speaker identity. The authors conducted an online plausibility norming study in which participants were asked to listen to264

each stimulus, and to rate how plausible it is that they would hear it in a conversation. Ratings were collected on a scale of265

1 to 6 (1 for highly implausible and 6 for highly plausible), with 20 ratings per stimulus. The results confirmed that stimuli266

in the congruent condition were rated as more plausible (𝑀 = 5.12) than stimuli in both the incongruent (𝑀 = 3.83) and267

the violative conditions (𝑀 = 2.11). A Bayesian linear mixed effects regression revealed that the plausibility ratings were268

infinitely more likely under a model with condition as a fixed factor and random intercepts for both participants and items.269

A variety of factors unrelated to congruence can affect the probability of words. Some first turns can highly constrain270

the second turn, while others allow for many possible responses. For example, "Do you mind helping me with my271

homework?" strongly projects either acceptance or rejection, whereas "You haven’t been answering any of my emails"272

could lead to various responses, including apologies, excuses, or denials. To control for this effect, the same first turn was273

used for every sequence in the same stimulus group. Additionally, words vary in frequency, with more frequent words274

(e.g., "I’m hot") being less surprising than infrequent words (e.g., "Sam did"). Therefore, the same second turn is used in275

both the congruent and incongruent conditions, with only the speaker identity changing. Finally, longer turns contain276

more information and generally result in lower probabilities overall. To minimize the effect of stimulus length, the second277

turn contains two syllables, resulting in turns of one or, at most, two words.278
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2.2.2 | Measures279

In the current paper, we draw on model estimated surprisal values to compare model behavior to human behavioral data.280

Surprisal is a measure derived from the probability distribution produced by language models. According to surprisal281

theory, the difficulty of processing a word corresponds to its surprisal based on the context within which it appears;282

suprisal is therefore hypothesized to correlate with the cognitive load experienced by a comprehender (Hale, 2001; Levy,283

2008). Although surprisal is a strong predictor of other metrics of processing difficulty, it is important to distinguish that284

it represents model-assigned probabilities, not direct measures of cognitive effort. Previous work, however, has shown285

surprisal to be an accurate predictor of cognitive load (Wilcox et al., 2020). Therefore, we analyze surprisal in this paper,286

defining it as the negative log probability of an event (Shannon, 1948). The less probable an event is, the more surprising287

it is, and the more information it contains.288

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 = − log𝑃 (𝑡𝑖 ∣ 𝑡1,… , 𝑡𝑖−1) (1)

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 =

𝑁
∑

𝑖=1
− log𝑃 (𝑤2

𝑖 ∣ 𝑤
2
1,… , 𝑤2

𝑖−1, 𝑤
1
1,… , 𝑤1

𝐾 ) (2)

We calculate surprisal for the stimuli from Warnke (2024) based on the surprisal of individual words within turns.289

Formally, let 𝑡𝑖 ∈ 𝑉 be a token that is defined in the vocabulary 𝑉 of a language model. Equation 1 shows the surprisal for290

a single token, which can be a word 𝑤𝑖, given all the previous words (𝑤1,… , 𝑤𝑖−1) in a sequence. For a given sequence of291

words 𝑆, Equation 2 defines the of the second turn 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑊 𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 in a two-turn stimulus (see Section 2.2.1) where the292

first turn has K words, denoted 𝑤1
1,… , 𝑤1

𝐾 , and the second turn has N words, denoted 𝑤2
1,… , 𝑤2

𝑁 . Here, the superscript293

represents the turn number and the subscript represents the position of a word in that turn. The 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑊 𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 is294

then the sum of the negative log probability for each word in the second turn given all previous words in the second turn295

and the entire first turn. Note that the second turn in our stimuli can contain at most two words, N ∈ {1, 2}.296

Finally, we compared these surprisal values to the data and analysis from Warnke (2024). In that experiment,297

the duration between the end of a turn and the button press was calculated into a variable called bias (calculated in298

milliseconds). To avoid confusion with the machine learning literature, where bias represents a systematic error, we refer299

to bias as offset response time (ORT) for the remainder of this work. A positive ORT indicates that participants pressed the300

button after the end of the turn, while a negative ORT indicates that participants pressed the button before the end of the301

turn. Results from Warnke (2024) show that ORT values are shortest for congruent turns, slightly longer for incongruent302

turns, and longest for violative turns. In other words, participants were more accurate at anticipating the end of the303

speaker’s turn when the turn was congruent, as confirmed by offline plausibility judgements. The authors interpreted these304

results as demonstrating an effect of predictability: the more predictable a turn given the preceding context, the more305

accurate participants are at estimating its precise ending. This conclusion falls in line with prior literature showing that the306

predictability of the words in a turn affects turn-end anticipation timing (Riest et al., 2015; Magyari and De Ruiter, 2012).307

Though we do not have direct access to human predictability measures (e.g. cloze norms) for these conversational turns,308

we draw on the well-documented relationship between a turn’s ORT and its linguistic content’s predictability: the more309

predictable a turn’s words, the shorter the ORT. We also draw on the relationship between plausibility and predictability:310

though plausibility and predictability are distinct constructs, implausible words and events are less predictable than311

plausible ones (Matsuki et al., 2011). Given these findings, we infer that ORT at least partially reflects language prediction312

processes in humans. Given that participants respond earlier to more predictable turns, a LLM that replicates human-like313

predictions should provide higher surprisal to turns with delayed participant responses.314
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2.2.3 | Analysis Plan315

In this section, we highlight the various statistical analyses used to produce the results in Section 3. To estimate the316

random and fixed effects on LLM-produced surprisal values, we use mixed effects regression (Baayen et al., 2008), which317

accounts for hierarchical relationships within the data. Each stimulus group (as described in Section 2.2.1) contains six318

stimuli with the same first turn but a second turn with different speaker identity and congruence conditions. If the first319

turn (e.g., "Do you like my wonderful painting?") strongly projects a specific second turn (e.g., “Yes"), both humans and320

language models will be very surprised when the second turn does not match the first, regardless of whether the second321

turn is incongruent or violative. To account for these non-independent relationships, we included a random intercept per322

stimulus group to account for any baseline differences in surprisal. Where necessary, we performed follow-up, post-hoc323

t-tests to determine the source of the main effects. For example, a main effect of congruence could be due to a difference324

between the violation and congruent condition, the violation and incongruent condition, and/or the incongruent and325

congruent conditions. Without explicitly testing for these differences, the source of the effect remains ambiguous.326

Further, to identify which predictors improved the regression performance, we created multiple regression models327

using the same surprisal data and compared them using likelihood ratio tests. Likelihood ratio tests allow us to compare328

the results from two statistical models, one with and the other without a target factor. If the data are more probable under329

model with the target factor, or if the model with the target factor has a statistically significantly better fit to the data, then330

the likelihood ratio test suggests that the factor improves the model.331

We conducted all tests using both frequentist and Bayesian statistics4. Frequentist statistics provides easily computable,332

concrete thresholds for statistical significance based on p-values. In contrast, Bayes Factors evaluate the strength of333

the evidence for one hypothesis over another. Bayes Factors (specified as 𝐵𝐹10) indicate evidence for the alternative334

hypothesis (𝐻1) over the null hypothesis (𝐻0). We interpret Bayes Factors using evidence categories from Wetzels et al.335

(2011), adapted from Jeffreys (1939). Frequentist and Bayesian statistics often show the same directionality, but can differ336

in their estimated strength of the effect.337

Finally, we use R syntax to describe regression models (such as in Table 3). The variable to the left of the ∼ indicates338

the outcome or dependent variable, in this case the surprisal of the LLMs. The ∼ indicates that the outcome variable339

is regressed on all the variables to the right. Random intercepts for the stimulus group are represented by (1 | Group).340

Congruence refers to the three-level categorical variable representing whether the second turn was congruent, incongruent,341

or violative, and Speaker refers to the two-level categorical variable indicating that the speaker of the second turn was the342

same (speaker hold) or different (speaker switch) than the speaker of the first turn.343

For conciseness and clarity, we present the Bayesian results from the best regression models as determined using344

likelihood ratio rests in Section 3. Detailed results from all regression models are in their respective appendices. For345

brevity, we refer to regression models as RMs in the remainder of this text.346

3 | RESULTS347

3.1 | Effect of Congruence and Speaker348

The predictability of a turn in natural spoken dialogue depends on the identity of the speaker. If LLMs learn to model349

the underlying structure of language in a similar way to humans, then we expect LLMs to be more surprised when the350

“wrong" speaker produces a turn compared to when the “right" speaker produces the same turn. In the human data, Warnke351

4All Bayesian and frequentist statistics were conducted using the R packages lme4, lmerTest, BayesFactor, brms, and bayesTestR (Bates et al.,
2015; Bürkner, 2017)
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(2024) found only a main effect of congruence with no interaction between speaker and congruence, and no main effect of352

speaker. Therefore, we hypothesize that LLMs will find that:353

Hypothesis 1 Incongruent second turns are more surprising than congruent second turns.354

Hypothesis 2 There is no main effect of speaker and no interaction effect between speaker and congruence on second-turn355

probabilities.356

To test these hypotheses, we used mixed-effects regression to model both the experimental effects and the random357

effect of stimulus group. As described in Section 2.1.2, we fine-tuned each LLM (TurnGPT and GPT2) on each dataset358

(five and twenty-eight conversations). Next, we identified which predictors improved the regression performance by359

creating and comparing five RMs for each LLM using the same surprisal data. We used likelihood ratio tests and Bayes360

factors to determine under which RM the data are most likely, and performed follow-up t-tests (both frequentist and361

Bayesian) to determine the source of the main effects where necessary (see Appendix B). Description 3 defines the best362

RM for each LLM, which includes main effects of speaker and congruence, along with interaction between speaker and363

congruence. In contrast, Warnke (2024) found that there was a main effect of speaker and congruence in humans but did364

not find any interaction effects (See Section 2.2.1).365

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 ∼ 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∗ 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 + (1|𝐺𝑟𝑜𝑢𝑝) (3)

F I G U R E 2 Surprisal across congruence and speaker conditions for GPT-2 fine-tuned on twenty-eight conversations. The
results indicate that the model aligns with Hypothesis 1 in the different speaker condition, but not in the same speaker condition.

As visualized in Figure 2, GPT-2 fine-tuned on twenty-eight conversations produced statistically significant differences366
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in surprisal between congruent and incongruent conditions5. Contradicting Hypothesis 2, there was a main effect of367

speaker identity, where the same-speaker condition (𝑀 = 26.35) was more surprising than the different-speaker condition368

(𝑀 = 25.40) (see Table 6). We also found interaction effects between speaker and congruence that provided mixed369

support for Hypothesis 1. Specifically, we found substantial evidence that the incongruent stimuli (𝑀 = 25.97) were370

more surprising than the congruent stimuli (𝑀 = 24.82, 𝐵𝐹10 = 3.30) within the different-speaker condition, supporting371

Hypothesis 1. However, we found anecdotal evidence for the opposite conclusion within the same-speaker condition:372

the congruent stimuli (𝑀 = 26.88) were more surprising than the incongruent stimuli (𝑀 = 25.81), which contradicts373

Hypothesis 1. Appendix B provides a more detailed description of these results.374

3.2 | Effect of Amount of Fine-tuning Data375

We investigated whether the amount of data used for fine-tuning LLMs (described in Section 2.1.1) affected surprisal376

values (see Figure 3). We suspected that fine-tuning LLMs on more conversations would result in surprisal values that377

more closely matched human responses and that RMs would find an interaction effect between the amount of fine-tuning378

and the effect of congruence. Specifically, we hypothesized:379

Hypothesis 3 The difference in surprisal values for the incongruent (more surprising) and congruent (less surprising)380

stimuli will increase for the fine-tuned LLMs compared to the pre-trained-only model.381

Hypothesis 4 Increasing the amount of fine-tuning will result in diminishing returns.382

To explore potential interaction effects between amount of fine-tuning and congruence, we first concatenated the data383

i.e., used all of the surprisal values produced by GPT-2 models trained on no (pre-trained only), five, and twenty-eight384

conversations (see Figure 3). We excluded TurnGPT from this analysis since it must be fine-tuned on speaker identity385

information before it can be used to produce meaningful surprisal values. Next, we created a categorical predictor386

indicating the dataset used to fine-tune the language model and created five mixed-effects RMs (described in Table 7) that387

added predictors to the best RM (see description 3) identified in Section 3.1. Note that we created one frequentist and one388

Bayesian RM since we concatenated the output from each LLM. See Appendix C for a more detailed description of these389

models.390

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 ∼ 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∗ 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 ∗ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 + (1|𝐺𝑟𝑜𝑢𝑝) (4)

We found decisive evidence that the data (surprisal values) were most likely under a mixed effects model (see391

description 4) with a three-way interaction between speaker (same vs. different), congruence (congruent, incongruent,392

violative), and amount of data used for fine-tuning (five vs. twenty-eight conversations). The data were 17 times more likely393

under this model than the next most likely model. While the Bayesian and frequentist RMs had the same directionality for394

all effects, the frequentist likelihood ratio tests found that the best model included only a main effect of fine-tuning amount395

and no interaction effects with fine-tuning amount. Since frequentist statistics are less robust against low samples sizes396

than Bayesian statistics, this effect is likely due to the low sample sizes within each combination of factors. Therefore, we397

present results from the RM described above (see description 4), which included three-way interaction effects.398

5We present results from GPT-2 fine-tuned on twenty-eight conversations for simplicity. All LLMs showed the same effect and had the same best
RM (see description 3).
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F I G U R E 3 Surprisal values for GPT-2 models fine-tuned on different amounts of data: none (null), five conversations, and
twenty-eight conversations. The figure demonstrates that the baseline surprisal increases at a decreasing rate as the amount of
fine-tuning data increases.

Interestingly, GPT-2 fine-tuned on five (𝛽5 = 12.94) and twenty-eight (𝛽28 = 14.67) conversations produced overall399

higher surprisal values than the null (pre-trained-only) GPT-2 model. In addition, the fine-tuned GPT-2 models produced400

slightly higher surprisal values than the null (pre-trained-only) model for the incongruent (𝛽5 = 0.53, 𝛽28 = 0.59) and401

violation (𝛽5 = 0.20, 𝛽28 = 0.16) conditions. This supports Hypothesis 3, since fine-tuning models resulted in a larger402

increase in surprisal for the incongruent stimuli compared to the congruent stimuli. Additionally, the difference in403

surprisal between the models fine-tuned on twenty-eight and five conversations was much smaller than the difference404

in surprisal between the models fine-tuned on five conversations and the null (pre-trained-only) model, which supports405

Hypothesis 4. However, this regression also found a number of unexpected results. Specifically, GPT-2 fine-tuned on five406

(𝛽5 = 12.94) and twenty-eight (𝛽28 = 14.67) conversations produced much higher surprisal values compared to the null407

(pre-trained-only) model and was more surprised by the same speaker stimuli (𝛽5 = 1.26, 𝛽28 = 1.23).408

3.3 | Explicit Versus Implicit Speaker Representation409

As described in Section 2.1.1, GPT-2 encodes words and their relative positions while TurnGPT additionally explicitly410

adds embeddings that encode speaker identity. It may be that providing speaker identity information to GPT-2 – similar411

to how humans hear the voice (and therefore can assess the identity) of their interlocutor in every word – would influence412

the models’ ability to be appropriately surprised in the context of spoken language.413

Hypothesis 5 Models with explicit speaker representation will more strongly distinguish between congruence conditions414

compared to models with implicit speaker representation.415

To investigate the effect of speaker representation on the LLMs’ ability to model spoken dialogue, we first concatenated416

data (surprisal) produced by GPT-2 and TurnGPT, both trained on twenty-eight conversations, assuming that models417
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F I G U R E 4 Effect of speaker representations (GPT-2 vs. TurnGPT fine-tuned on twenty-eight conversations) on surprisal
for different and same-speaker stimuli. Note that the baseline surprisal values significantly differ based on the model type
(TurnGPT vs. GPT-2).

fine-tuned on a greater number of conversations will more closely match human behavior. Next, we created a categorical418

predictor indicating the model type (implicit vs. explicit) and created five mixed-effects RMs (described in Table 10) that419

added predictors to the best RM (see description 3) identified in Section 3.1. As with the analyses conducted in Section420

3.2 (to explore the effect of fine-tuning amount), Bayesian analysis found decisive evidence (𝐵𝐹10 = 293.82) that the421

data were most likely under the model that included all two-way interaction effects and a three-way interaction effect422

between speaker, congruence, and model type (see description 5).423

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 ∼ 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∗ 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 ∗ 𝑀𝑜𝑑𝑒𝑙 + (1|𝐺𝑟𝑜𝑢𝑝) (5)

However, frequentist likelihood ratio tests suggested that the interaction effects did not improve model performance424

(RM 11 in Table 10). Given that the Bayesian and frequentist coefficients pointed in the same direction, and that frequentist425

analyses are less robust against lower sample sizes, we present the results from the best RM as determined by Bayesian426

analyses in this section (see Appendix D for a description of all other RMs). As shown in Figure 4, TurnGPT produced427

surprisal values that were less affected by incongruence values than GPT-2 (𝛽 = -0.18), contradicting Hypothesis 5.428

Interestingly and unexpectedly, TurnGPT produced much lower surprisal values overall (𝛽 = -13.21) and was less surprised429

by the same speaker condition (𝛽 = -1.09).430

3.4 | Predicting End-of-Turn Response Times431

In Sections 3.1, 3.2, and 3.3, we analyzed patterns in surprisal values produced by LLMs to turns that ranged in their432

speaker and congruence, as judged by humans. We found that the LLMs produced expected surprisal patterns in the433
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different-speaker condition, but unexpected surprisal patterns in the same-speaker condition. A stronger test of language434

model performance is to directly compare model surprisal values with the human behavioral data from Warnke (2024). In435

their study, the authors calculated offset response time (ORT) as the duration between the end of the second turn and436

participants’ button press (See Section 2.2.1), and found that ORT was dependent on congruence: ORT was largest for the437

violation condition and shortest for the congruent condition. Here, we investigate whether the model-estimated surprisal438

values predict human ORTs.439

Hypothesis 6 Turns with higher ORTs (indicating later end-of-turn anticipation by humans) will exhibit higher surprisal440

values.441

To investigate this hypothesis, we generated a baseline model (Equation 6), and determined whether the data were442

more likely under the model that included surprisal as an additional predictor (Equation 7). Below, we present the results443

of TurnGPT trained on twenty-eight conversations. We chose to use only TurnGPT for the current analysis because it444

explicitly represents speaker identity, therefore capturing information that humans also have access to.445

ORT ∼ 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∗ 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 + (1|𝐺𝑟𝑜𝑢𝑝) + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) (6)
ORT ∼ 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∗ 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 + 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 + (1|𝐺𝑟𝑜𝑢𝑝) + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) (7)

We found strong evidence that the data were more likely under the model that included surprisal as a predictor (𝐵𝐹10446

= 11.27) – but in the opposite direction as stated in Hypothesis 6. Surprisal was negatively associated with ORT (𝛽447

= -0.04, t = -3.32, p < 0.01). This effect indicates that human participants responded earlier to turns with words that448

TurnGPT found more surprising.449

To understand these surprising results, we examined individual stimuli qualitatively. This stimulus-by-stimulus450

approach can generate potential explanations and hypotheses to explore in future work. We find that factors other than451

surprisal, such as turn construction, may influence ORT in different ways than LLM-produced surprisal. Note that this452

strategy has severe limitations, including the fact that word frequency strongly affects surprisal values: common words453

in a violative condition may be less surprising than rare words in a congruent condition. We include the results of this454

analysis in Appendix E.455

It is also important to consider that the surprisal (see Equation 2) used in this task is based on the predictability of456

individual words within the turns. This method captures local dependencies and provides a detailed view of word-by-word457

predictability, aligning with traditional LLM training objectives (Radford et al., 2019; Brown et al., 2020). Surprisal is458

therefore a direct function of the predictability of words. In contrast, in the experimental data we analyze here, humans459

were asked to predict the end of turn through a button press task. Our comparison of ORT and surprisal rests on the460

assumption that the timing of the button press is dependent on the predictability of the words in the turn. In order to461

bypass this assumption, we conducted a follow-up analysis in which we calculated the surprisal of the end of the turn462

and then compared these values to human ORT data, effectively mimicking the experimental task in our models. We463

calculated surprisal based on the probability of the end of turn (EOT) token, which is used by LLMs internally to indicate464

end of turns, after all the words in both the first and second turns of the two-turn stimulus. This method considers the turn465

as a whole and its completion, addressing potential biases from incomplete fragments and aligning more closely with the466

task of predicting turn endings. Using this method, we find no relationship between turn-end surprisal and ORT: the467

model-estimated end-of-turn surprisal had no relationship with human end-of-turn estimation timing. This suggests that468

our new model also does not predict spoken dialogue in the same way that humans do. See Appendix F for the results of469

our experiments based on the alternative surprisal formulation.470
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4 | DISCUSSION471

Notwithstanding the success story of LLMs, these models are predominantly pre-trained on written monologue. This raises472

the question of whether LLMs are able to model the unique dynamics of spoken dialogue, the oldest and most ubiquitous473

way humans communicate with each other. In the current paper, we investigate whether LLMs learn the normative474

structure underlying interactive spoken language, or whether they instead replicate superficial statistical regularities of475

language.476

An utterance’s message depends on who is saying it, so a crucial aspect of spoken conversation is listeners’ ability477

to identify who is speaking. Humans use their knowledge of speaker identity during language comprehension to478

predict upcoming language in conversation. We therefore specifically investigated the ability of LLMs to accurately479

incorporate speaker identity information in their predictions. First, we fine-tuned several variants of GPT-2 on transcripts480

of natural conversations containing speaker identity information. We then obtained model-estimated surprisal values for481

conversational turns from Warnke (2024)’s experimental stimuli. We investigated whether our models could differentiate482

between experimental conditions based on congruence, and then compared model surprisal to human behavioral data483

from the same experiment. Below, we briefly summarize our findings, and then discuss their implications for the use of484

LLMs in spoken dialogue research.485

Our analyses show that all fine-tuned LLMs found incongruent turns more surprising than congruent turns in486

sequences with speaker transitions, but not in sequences with speaker holds. Our models showed a main effect of speaker:487

turns with speaker holds were more surprising to the models than turns with speaker transitions. Lastly, we found an488

interaction effect: incongruent and violation conditions (turns that were unexpected independent of speaker identity) were489

deemed less surprising in the same-speaker condition than in the different-speaker condition. These results suggest that490

our models do not take speaker identity information into account when differentiating between turn congruence in the491

same way that humans do.492

Given that humans take into account speaker identity in their linguistic predictions, we explored whether a model493

with an explicit representation of speaker identity, TurnGPT, would better predict language in dialogue. We found that494

surprisal values were much lower overall for TurnGPT. Further, while this model produced lower surprisal values for495

the same-speaker condition as compared to GPT-2, it found that the same-speaker stimuli were more surprising than the496

different-speaker stimuli. This indicates that even when speaker identity is explicitly represented, the model still does not497

replicate human behavioral data.498

An additional goal in the current paper was to investigate the effect of fine-tuning dataset size on model performance.499

We found that models trained on five and twenty-eight conversations produced higher surprisal values than the null500

(pre-trained only) GPT-2 model. We found a bigger difference in surprisal between the models fine-tuned on five vs.501

twenty-eight conversations than models fine-tuned on five conversations vs. the null model. This suggests that a smaller502

amount of data may be sufficient for fine-tuning our models.503

Lastly, we directly investigated the relationship between model surprisal and human ORTs for the stimuli from504

Warnke (2024)’s end-of-turn prediction task. We found that model surprisal was negatively correlated with ORT in the505

corresponding human data: turns that the models predicted to have high surprisal were associated with faster human506

responses. This somewhat surprising finding suggests that our models do not replicate human dialogue processing.507

Taken together, our results show that LLMs that are fine-tuned on dialogue data with speaker identity information508

generally do not exhibit human-like performance in spoken dialogue. Only when there was a speaker transition, the509

fine-tuned language models were able to use speaker identity to predict the probability of words in a pattern similar to that510

of human participants. We would like to note that evaluating LLM ability to use speaker identity information constitutes a511

relatively weak test of understanding conversational structure. Conversational interaction consist of complex sequential512
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relations that are much more-open ended, context dependent, and less contrastive than our test of speaker identity use to513

predict upcoming words (Sidnell and Enfield, 2012; Levinson, 2013). If LLMs are not able to take into account speaker514

identity, there is little reason to think that LLMs would grasp other more complex features of conversational structure.515

The most principled way to address this problem would be to pre-train LLMs using data from naturally occurring spoken516

dialogue. At present, the availability of transcribed spoken dialogue data is several orders of magnitudes lower than for517

written monologue data, but incremental progress can perhaps be achieved by adapting the models and/or the fine-tuning518

regimes to improve the models’ awareness of speaker identity in other, more principled and effective ways than we could519

in this study.520

In the current study, we compare GPT-2 to human data from a behavioral experiment with relatively high ecological521

validity. That said, our comparison of model output to data from this particular experiment has several limitations. First,522

the experiment consists of an overhearer paradigm, meaning participants listened to conversations rather than actively523

participating in them. Second, the experimental data and the fine-tuning data differ in the proportions of speaker holds524

and transitions. In the experimental stimuli, turn-taking was evenly split: half of the second turns were spoken by the525

same speaker as the first, and half were spoken by a different speaker. In contrast, in the naturally occurring conversations526

used for fine-tuning, 80% of turns involved a speaker transition. This imbalance may explain why the model makes more527

human-like predictions in sequences with speaker changes but performs less accurately in sequences with speaker holds.528

As a result, our findings might reflect the model’s sensitivity to this imbalance, rather than its capacity to make human-like529

prediction.530

It is important to note that the experimental design in this work involves a key trade-off: the experimental stimuli were531

designed to isolate the effect of speaker identify on word probabilities (e.g, by controlling for turn length, speaker transition532

rations, etc.), which inherently differentiates them from the naturally occurring conversations used for fine-tuning. One533

factor is that, while the fine-tuning data reflects the uneven distribution of speaker holds and transitions typical in real534

dialogue, the testing stimuli balanced speaker transitions as is common and necessary in experimental design (Warnke,535

2024). To address this imbalance and better understand its effect on LLMs’ ability to make human-like predictions, we536

recommend the following steps for future research. Training and evaluation data should have matching ratios of speaker537

transitions, ideally reflecting those in natural conversations rather than the artificially balanced experimental designs.538

Additionally, data used to fine-tune the models should be transcribed more granularly such that that successive TCUs539

spoken by the same speaker would appear as speaker holds rather than as a single turn spoken by one speaker. Capturing540

accurate speaker transition ratios from these more detailed natural transcripts could also inform the design of experimental541

stimuli. Achieving closer alignment between training and evaluation data will be crucial for validating these findings in542

future research.543

A further limitation of the current study rests in its assumptions. Specifically, we compare lexical level model-544

estimated surprisal to turn-end anticipation as measured by ORT in humans. Given that prior research has shown a545

relationship between lexical predictability and turn-end anticipation timing, we assume that turn-end anticipation timing546

indexes lexical predictions in humans. We then draw on this assumption to evaluate the model’s performance compared to547

humans. One limitation of our approach is that turn-end estimation as measured by a button press is an indirect measure548

of human lexical predictability. Future work could bypass this, and more directly measure offline human predictability549

judgments (e.g. cloze norms) in addition to on-line behavioral (or neural) measures of turn predictability to compare to550

model-estimated surprisal. This would provide stronger evidence for evaluating LLMs’ ability to capture predictability as551

humans do in a spoken dialogue setting.552

One unexpected finding of the current paper is that model-estimated surprisal values were negatively associated553

with human ORTs: turns with shorter ORTs were more surprising to the model. To investigate this relationship, we554

conducted a qualitative analysis of individual stimuli. While this stimulus-by-stimulus approach has severe limitations, it555
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can generate tentative explanations and hypotheses for explaining our results and for future research. In our analysis, we556

found examples of stimuli with high ORT but low model-estimated surprisal. In these stimuli, participants could have557

understood the short second turn to project upcoming talk, and thus waited to indicate the end of the turn. Listeners558

generally assume cooperativity in conversation (Warnke and de Ruiter, 2023), thus perceiving an incongruent stimulus as559

an incomplete fragment. It is worth noting that our experiment only consisted of relatively short second turns with only560

one or two words. Further research should investigate the relationship between surprisal, perceived turn completeness,561

and the incorporation of speaker identity in dialogue prediction using turns that vary more in their length and complexity,562

providing a more ecologically valid environment.563

Another unexpected finding of our study is that fine-tuned LLMs showed an increase in surprisal compared to the564

null models. One explanation for these higher baseline surprisal values might be the differences in the distribution of the565

pre-training and fine-tuning data (See Section 2.1.2). Specifically, the fine-tuning data from the ICC included speech566

particles and unique terminologies absent from the written-first language data used in pre-training. These elements,567

such as transcribed word cutoffs and stutters, may cause the fine-tuned models to predict words at a lower probability,568

reflecting a more nuanced understanding of spoken dialogue. Despite these potential differences, the ICC data provides a569

richer context for understanding conversational dynamics, essential for modeling spoken dialogue. Average surprisal570

(i.e., perplexity) does not necessarily indicate worse predictions; instead, speakers can purposely increase surprisal to571

create a more uniform information density (Jaeger and Levy, 2006) or to perform specific actions, such as telling jokes572

(Xie et al., 2021). Experimental evidence shows that models with higher perplexity can better model human language573

comprehension (Oh and Schuler, 2023; Kuribayashi et al., 2021). Therefore, our use of the ICC, a corpus of unscripted574

dialogue, provides valuable insights into the use of LLMs in a spoken language context.575

Though the limitations discussed above somewhat impact the generalizability of the work presented here, we do not576

think that they substantially undermine our conclusion that LLMs trained on written monologue do not replicate the unique577

dynamics of spoken dialogue. It is worth noting that our study investigated only models trained on English language using578

English experimental material. Languages and cultures vary in their dynamics of dialogue. Australian Aboriginal people,579

for example, are comfortable with longer silences between turns in conversation (Mushin and Gardner, 2009), whereas580

speakers of English consider longer pauses to be indicative of a communication problem (Jefferson, 1989). In Japanese581

talk, backchannels are far more frequent compared to American English (White, 1989), and across languages and cultures,582

interruptions can signify different communicative intentions (Murata, 1994). Given the cross-cultural variation of talk583

in dialogue, it would be interesting and important to replicate the current work in other languages to investigate which584

dialogic dimensions LLMs can and cannot learn. Future research should also investigate the ability of LLMs to predict585

spoken language with state-of-the-art models as they become available. Taken together, our findings suggest that the fact586

that LLMs show impressive human-like performance in written language, does not (yet) mean that they are suitable for587

employment in embodied interactive agents, dialogue systems, or the scientific analysis of spoken conversation.588

5 | RISKS AND ETHICAL CONSIDERATIONS589

Despite the major advancements in language modeling provided by LLMs, they are accompanied by a number of inherent590

risks. The data used to train LLMs generally contain ableist, racist, or misogynistic worldviews, which means that they591

tend to absorb and amplify harmful stereotypes (Bender et al., 2021). Off-the-shelf models, for example, have been found592

to exhibit considerable anti-queer bias (Felkner et al., 2023). While this bias can be reduced by fine-tuning LLMs on data593

written directly by members of particular marginalized communities, most widely available LLMs are not fine-tuned to594

mitigate these stereotypes. Biased language output from LLMs can be particularly harmful due to our natural tendency to595
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infer coherence and communicative intent originating from a real person from language (Bender et al., 2021; Warnke and596

de Ruiter, 2023), even when it is generated by machines (Nass et al., 1994; Weizenbaum, 1976). Because LLMs are not597

individuals, are not ‘intelligent’ (Pasquinelli, 2020), and simply replicate statistical dependencies, language generated598

by them cannot contain any communicative intent. Our propensity to interpret language as communicative acts that599

convey intent can therefore lead to a flawed interpretation of meaning from LLMs’ biased output. Furthermore, because600

LLMs vary in their degree of openness, they lack computational reproducibility (Liesenfeld et al., 2023). It is especially601

important to keep these harms in risks in mind since most state-of-the art LLMs are not truly open-source and are only602

available through public facing interfaces (Liesenfeld and Dingemanse, 2024). We would like to note that no AI-tools603

were used to assist in the writing of or analysis conducted in this work.604
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A | FINE-TUNING PROCEDURES808

This appendix provides a detailed overview of the data, data transformations, and fine-tuning procedures used in this809

study. First, since verbatim transcripts of conversation are resource intensive to produce, we investigate the effect of the810

amount of data available for fine-tuning on the LLM-surprisal values (see Section 3.2). To ensure that any difference was811

due to the amount of fine-tuning and not unexpected differences between corpora, we examined the frequency of words in812

the two datasets. Most words had very similar frequencies across both datasets. As shown in Figure A1, the frequency813

of almost all words changed by less than 0.5% in either direction. The frequency of "know" changed the most between814

datasets; it composed 2.79% of the words produced in the five-conversation dataset, and 2.17% of the words produced in815

the twenty-eight conversation dataset. 74.31% of the unique words in the five-conversation corpus had a lower frequency816

in the twenty-eight conversation corpus; 25.68% of the words had a higher frequency in the twenty-eight conversation817

corpus. 60.32% of all unique words in the twenty-eight conversation corpus were not present in the five-conversation818

corpus, but these words only made up 8.9% of all the spoken words. We determined that the differences in these data819

were negligible for the purposes of this study. Therefore, differences in the outcome of models can be attributed to the820

amount of fine-tuning data and not the vocabulary used in the corpora.821

F I G U R E A 1 Percent change in word frequencies after adding twenty-three conversations to the five-conversation dataset.
Values to the left of the vertical dotted line (negative values) indicate that the five-conversation dataset had a higher word
frequency than the twenty-eight-conversation dataset.

Next, we prepared the GPT-2 and TurnGPT models and the five- and twenty-eight-conversation datasets for the822

fine-tuning process (see Section 2.1.2). We used the pre-trained GPT-2 model from the transformers library (Wolf et al.,823

2020) and implemented TurnGPT on top of this base model using PyTorch Lightning (Falcon and The PyTorch Lightning824

team, 2019) as the main implementation framework. TurnGPT requires additional tokens to represent speaker identities825

and must be fine-tuned to use this information accurately. Due to resource constraints, we used the smallest GPT-2 model826

with 117M parameters, 12 layers, 12 heads, and 768 hidden units as the pre-trained model in both cases.827

To ensure accurate surprisal calculations, we performed data preprocessing on both the ICC used for fine-tuning and828

the experimental stimuli from Warnke (2024) (see Figure A2). In line with prior work, we added additional tokens to829

GPT-2 to indicate speaker turns, along with start- and end-of-sequence tokens (e.g., Ekstedt and Skantze 2020) in all830

cases. These additional tokens were unnecessary for TurnGPT, as its tokenizer already assigns explicit speaker identities831

to each turn in a sequence. The preprocessing steps differed depending on the surprisal calculation method (see Section832

2.2.2). For the word-only surprisal method (see Equation 2 ), no extra tokens were required. However, for the end-of-turn833

(EOT) token surprisal method (see Equation 8), we inserted an explicit EOT token after each turn in the fine-tuning data834
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and after the first turn in the two-turn stimuli during inference. This step is crucial for teaching the model to recognize835

turn boundaries, which is essential for accurate turn-taking predictions in dialogue systems (Skantze, 2017; Ekstedt and836

Skantze, 2022; Jiang et al., 2023).837

We fine-tuned each model on the next-word prediction task, which is a common practice in training language models.838

This objective enables models to learn the probability distribution of words, improving their ability to generate coherent839

and contextually appropriate text (Radford et al., 2019; Brown et al., 2020). As a result, we created two versions of each840

model (GPT-2 and TurnGPT) fine-tuned on both the five and twenty-eight conversation datasets, resulting in ten total841

fine-tuned language models. On average, it took approximately 2 hours to fine-tune each model using NVIDIA’s T4 GPUs842

on a high performance cluster.843

F I G U R E A 2 Example of data preprocessing applied to the ICC dataset and stimuli from Anonymous (2024). The top row
shows preprocessing for the word-based surprisal method, while the bottom row shows preprocessing for the end-of-turn (EOT)
surprisal method. Differences appear between surprisal methods (rows) and models (columns). For GPT-2, the EOT token
(<ts>) and speaker labels (<SP1>, <SP2>) are added, along with start and end tokens (<START>, <END>) to indicate
complete sequences. TurnGPT, however, encodes speaker information internally and does not require explicit speaker labels.
Formatting was kept consistent across fine-tuning and inference data.
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B | FULL CONGRUENCE AND SPEAKER REGRESSION RESULTS844

This appendix provides a detailed overview of the analysis and results obtained in Section 3.1. In that section, we845

investigated whether the fine-tuned LLMs, described in Section 2.1.1, would find incongruent stimuli more surprising than846

congruent stimuli (Hypothesis 1) and whether there would be any main effects of speaker or interaction effects between847

speaker and congruence (Hypothesis 2). As shown in Figure B1, we created five RMs for each language model (for a848

total of 25 Bayesian and frequentist models) to help determine whether speaker identity (same vs. different), congruence849

(congruent, incongruent, and violative), and any interaction effects between the two influence LLM produced surprisal850

values for the second turn in each stimulus (see Section 2.2.1). We compared the frequentist RMs using likelihood ratio851

tests and Bayesian RMs using Bayes Factors to identify the best RMs.852

Regression Model Regression Equation
Model 1 Surprisal ∼ (1 | Group)
Model 2 Surprisal ∼ Speaker + (1 | Group)
Model 3 Surprisal ∼ Congruence + (1 | Group)
Model 4 Surprisal ∼ Speaker + Congruence + (1 | Group)
Model 5 Surprisal ∼ Speaker * Congruence + (1 | Group)

TA B L E 3 Regression models created for each language model using the lmer (Bates et al., 2015) (frequentist) and brms
(Bürkner, 2017) (Bayesian) packages in R (Bates et al., 2015; Bürkner, 2017).

Table 4 shows the Bayes Factors comparing RMs 2-5 to RM 1 in Table 3 for the pre-trained (Null) model, GPT-2,853

and TurnGPT fine-tuned on five and twenty-eight conversations. For each LLM, the most likely RM was Model 5 (as854

described in Table 3), which included main effects of and interaction effects between speaker and congruence. Note855

that the RMs for an LLM can be compared by dividing the Bayes Factor of one by the other. For example, the best856

RM (Model 5 in Table 4) for the null GPT-2 (𝐵𝐹10 = 7.64𝐸 + 08) was 1,800 times more likely than the next best RM857

(𝐵𝐹10 = 4.18𝐸 + 05).858

GPT-2 Turn GPT
Regression Model Null Five Twenty-Eight Five Twenty-Eight

Model 2 0.544 17.37 7.62 2.5 2.44
Model 3 7.84E+05 852.29 243.05 7.89E+03 3.28E+06
Model 4 4.18E+05 1.57E+04 1.89E+03 2.03E+04 8.40E+06
Model 5 7.64E+08 1.35E+10 5.19E+08 4.05E+07 4.77E+11

TA B L E 4 Bayes Factors for regression models (as described in Table 3) investigating the effect of predictors on surprisal.
The denominator for the Bayes Factors was Model 1 in Table 3.

Additionally, to compare the variance explained by the RMs in Table 3, we performed frequentist likelihood ratio tests,859

which replicated the pattern of Bayes Factors described above. Table 5 presents the coefficients for all RMs described860

in Table 3 for the pre-trained only (null) GPT-2 as well as GPT-2 and TurnGPT fine-tuned on each dataset (five and861

twenty-eight conversations). Figure B1 provides a visualization of the coefficients and 95% CI for all models described862



28 UMAIR ET AL.

in Table 5. It shows that all fine-tuned models found that the main effects of speaker and congruence, along with their863

interaction effects, were all statistically significant predictors of surprisal.864

GPT-2 Turn GPT
Null Five Twenty-eight Five Twenty-Eight

Intercept 10.16
(9.68 - 10.64)**

23.1
(22.42 - 23.77)**

24.82
(24.21 - 25.44)**

12.15
(11.51 - 12.8)**

11.61
(11.08 - 12.15)**

Same 0.82
(0.21 - 1.43)*

2.09
(1.39 - 2.8)**

2.06
(1.31 - 2.81)**

0.87
(0.03 - 1.71)*

0.96
(0.28 - 1.65)*

Incongruent 0.55
(-0.06 - 1.16)

1.08
(0.38 - 1.79)*

1.15
(0.4 - 1.89)*

0.88
(0.03 - 1.72)*

0.97
(0.28 - 1.66)*

Violation 1.91
(1.3 - 2.52)**

2.11
(1.41 - 2.82)**

2.06
(1.32 - 2.81)**

2.26
(1.42 - 3.10)**

2.31
(1.62 - 3.00)**

Same *Incongruent -1.09
(-1.95 - -0.23)

-2.15
(-3.15 - -1.15)**

-2.24
(-3.3 - -1.18)**

-1.73
(-2.92 - -0.53)*

-1.92
(-2.89 - -0.94)**

Same *Violation -1.68
(-2.55 - -0.82)**

-2.43
(-3.43 - -1.43)**

-2.39
(-3.45 - -1.33)**

-2.15
(-3.34 - -0.95)**

-2.09
(-3.06 - -1.11)**

𝑅2 0.24 0.47 0.29 0.17 0.22
TA B L E 5 Frequentist regression results for most predictive model, Model 5 in Table 3, for all language models. 95%
confidence intervals presented in parentheses. * = p-value under 0.05, ** = p-value under 0.01.

GPT-2 Turn GPT
Null Five Twenty-eight Five Twenty-eight

Same Different Same Different Same Different Same Different Same Different
Congruent Mean 10.98 10.16 25.19 23.09 26.88 24.82 13.02 12.15 12.58 11.61
Incongruent Mean 10.45 10.71 24.13 24.18 25.81 25.97 12.18 13.03 11.64 12.58
t 1.50 -1.62 2.19 -2.27 2.50 -2.60 1.87 -1.93 2.49 -2.56
p 0.14 0.11 0.03* 0.02* 0.01* 0.01* 0.06 0.05* 0.01* 0.01*
𝐵𝐹10 0.40 0.48 1.33 1.59 2.58 3.30 0.72 0.80 2.57 2.98

TA B L E 6 T-tests comparing surprisal of (in)congruent stimuli for each language model, split by speaker condition. Most
fine-tuned models found that congruent stimuli were more surprising than incongruent stimuli in the same-speaker conditions.
However, they found that congruent stimuli were less surprising than incongruent stimuli in the different-speaker condition.
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F I G U R E B 1 The regression coefficients for all fixed effects in regression model 5 (see Table 3) for all language models.

To investigate the statistically significant interaction effects between speaker and congruence highlighted above,865

we performed a series of follow-up t-tests (both Bayesian and frequentist). These tests compared the incongruent and866

congruent stimuli within each speaker condition (same vs. different) for each language model (GPT-2 and TurnGPT)867

fine-tuned on both datasets (five and twenty-eight conversations). Table 6 shows that most of the fine-tuned models found868

statistically significant differences between the congruent and incongruent stimuli. The Bayes Factors indicated anecdotal869

evidence for most of the statistically significant effects. Interestingly, the directionality of the effects differed between the870

same (𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 > 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) and different (𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 < 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) speaker conditions.871

Nether the Bayesian nor frequentist t-tests found differences between the incongruent and congruent conditions for the872

null (pretrained-only) model.873
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C | REGRESSIONS INVESTIGATING AMOUNT OF FINETUNING874

This appendix provides a detailed overview of the results presented in Section 3.2, where we investigated whether the875

amount of natural conversational data used for fine-tuning LLMs affected surprisal values. To do so, we concatenated876

the surprisal data produced by GPT-2 models trained on no (pre-trained-only), five, and twenty-eight conversations (see877

Section 2.1.2). We created a categorical predictor indicating the dataset used to fine-tune the models and created five878

RMs, as described in table 7, that added predictors to the best RM (see Equation 3) from Section 3.1.879

Regression Model Regression Equation
Model 6 Surprisal ∼ Speaker * Congruence + Dataset + (1 | Group)
Model 7 Surprisal ∼ Speaker * Congruence + Speaker * Dataset + (1 | Group)
Model 8 Surprisal ∼ Speaker * Congruence + Congruence * Dataset + (1 | Group)
Model 9 Surprisal ∼ Speaker * Congruence + Congruence * Dataset + Speaker * Dataset + (1 | Group)
Model 10 Surprisal ∼ Congruence * Dataset * Speaker + (1 | Group)

TA B L E 7 Regression models created using the lmer (Bates et al., 2015) (frequentist) and brms (Bürkner, 2017) (Bayesian)
packages in R to explore the effect of the amount of fine-tuning data on the surprisal values produced by GPT-2.

Regression Model Bayes Factor
Model 7 9.75
Model 8 0.57
Model 9 5.45
Model 10 169.91

TA B L E 8 Bayes Factors for regression models (as described in Table 7) investigating the effect of training amount on
surprisal patterns. The data were so unlikely under the null model (that did not contain training amount as a predictor) that the
resulting Bayes Factors were too large to compute. Therefore, in this table, the denominator for the Bayes Factors was the model
that contained the baseline model (random intercept for stimulus group, main effects of congruence and speaker, and an
interaction effect between congruence and speaker) and a main effect for training amount (Model 6 in Table 7).

We found that the only statistically significant interaction effects between fine-tuning amount and other factors were880

the interaction effects between training amount and speaker identity. Additionally, we compared the frequentist RMs using881

likelihood ratio tests (see Table 9) and Bayesian RMs using Bayes Factors (see Table 8). The likelihood ratio tests found882

no statistically significant difference in model performance when eliminating all interaction effects between the dataset883

size and the other predictor. In contrast, we found decisive evidence that the best model (𝐵𝐹10 = 169.91) contained all884

the interaction effects (Model 10 in Table 7).885
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Estimate t p
(Intercept) 10.16 (9.56 - 10.76) 33.33 <0.01**
Five 12.94 (12.2 - 13.67) 34.43 <0.01**
Twenty-Eight 14.67 (13.93 - 15.4) 39.04 <0.01**
Incongruent 0.55 (-0.18 - 1.28) 1.47 0.14
Violation 1.91 (1.17 - 2.64) 5.08 <0.01**
Same Speaker 0.82 (0.09 - 1.56) 2.19 0.03*
Five * Incongruent 0.53 (-0.51 - 1.57) 0.99 0.32
Twenty-Eight * Incongruent 0.59 (-0.44 - 1.63) 1.12 0.26
Five * Violation 0.20 (-0.83 - 1.24) 0.38 0.70
Twenty-Eight * Violation 0.16 (-0.88 - 1.19) 0.29 0.77
Five * Same Speaker 1.26 (0.23 - 2.30) 2.38 0.02*
Twenty-Eight * Same Speaker 1.23 (0.20 - 2.27) 2.33 0.02*
Incongruent * Same Speaker -1.10 (-2.14 - -0.06) -2.06 0.04*
Violation * Same Speaker -1.68 (-2.72 - -0.65) -3.17 <0.01*
Five * Incongruent * Same Speaker -1.05 (-2.52 - 0.42) -1.4 0.16
Twenty-Eight * Incongruent * Same Speaker -1.15 (-2.61 - 0.32) -1.52 0.13
Five * Violation * Same Speaker -0.74 (-2.21 - 0.73) -0.98 0.33
Twenty-Eight * Violation * Same Speaker -0.71 (-2.17 - 0.76) -0.94 0.35

TA B L E 9 Coefficients for frequentist regression including all two- and three-way interactions. 95% confidence intervals
presented in parentheses. * = p-value under 0.05, ** = p-value under 0.01.
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D | REGRESSION MODELS ANALYZING SPEAKER REPRESENTATIONS886

This appendix provides a detailed overview of the results presented in Section 3.3, where we investigated the effect887

of speaker representation (implicit vs. explicit) on second-turn surprisal values generated by LLMs. To do so, we888

concatenated the data from the GPT-2 and TurnGPT models fine-tuned on twenty-eight conversations. The frequentist889

regressions (Table 11) found that TurnGPT produced statistically significantly lower surprisal values. It also found that890

TurnGPT was statistically significantly less surprised by the stimuli in the same-speaker condition.891

Regression Model Regression Equation
Model 11 Surprisal ∼ Speaker * Congruence + Model + (1 | Group)
Model 12 Surprisal ∼ Speaker * Congruence + Speaker * Model + (1 | Group)
Model 13 Surprisal ∼ Speaker * Congruence + Congruence * Model + (1 | Group)
Model 14 Surprisal ∼ Speaker * Congruence + Congruence * Model + Speaker * Model + (1 | Group)
Model 15 Surprisal ∼ Speaker * Congruence * Model + (1 | Group)

TA B L E 1 0 Regression models created using the lmer Bates et al. (2015) (frequentist) and brms Bürkner (2017) (Bayesian)
packages in R to explore the effect model type (GPT-2 or TurnGPT, both fine-tuned on twenty-eight conversations).

Estimate t p
(Intercept) 24.83 (24.25 - 25.4) 84.15 <0.01**
TurnGPT -13.21 (-13.94 - -12.48) -35.27 <0.01**
Incongruent 1.15 (0.41 - 1.88) 3.06 <0.01*
Violative 2.06 (1.33 - 2.80) 5.51 <0.01**
Same Speaker 2.06 (1.33 - 2.79) 5.50 <0.01**
TurnGPT * Incongruent -0.18 (-1.21 - 0.86) -0.34 0.74
TurnGPT * Violation 0.25 (-0.79 - 1.28) 0.46 0.64
TurnGPT * Same Speaker -1.09 (-2.13 - -0.06) -2.07 0.04*
Incongruent * Same Speaker -2.24 (-3.27 - -1.2) -4.22 <0.01**
Violation * Same Speaker -2.39 (-3.42 - -1.35) -4.51 <0.01**
TurnGPT * Incongruent * Same Speaker 0.32 (-1.15 - 1.78) 0.42 0.67
TurnGPT * Violation * Same Speaker 0.30 (-1.16 - 1.77) 0.40 0.69

TA B L E 1 1 Results for most complex regression model analyzing how speaker representations predict surprisal (Model 15
in Table 10). 95% confidence intervals presented in parentheses. * = p-value under 0.05, ** = p-value under 0.01.

We compared frequentist models using likelihood ratio tests and Bayesian models using Bayes Factors. The likelihood892

ratio test found no statistically significant difference in model performance when eliminating all interaction effects between893

the dataset size and the other predictor. In contrast, as Table 12 shows, we found decisive evidence that the best model894

contained all the interaction effects (RM 15 in Table 10).895
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Regression Model Bayes Factor
Model 12 51.35
Model 13 1.67
Model 14 86.25
Model 15 293.82

TA B L E 1 2 Bayes Factors for regression models (described in Table 10) investigating the effect of embedding type
(TurnGPT vs. GPT-2 embedding) on surprisal patterns. The data were so unlikely under the null model (that did not contain
model type as a predictor) that the resulting Bayes Factors were too large to compute. Therefore, the denominator for these Bayes
Factors is the model that contained the baseline model (random intercept for stimulus group, main effects of congruence and
speaker, and an interaction effect between congruence and speaker) and a main effect for model type (Model 11 in Table 10).
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E | ANALYSIS OF INDIVIDUAL STIMULI896

In Section 3.4, we investigated whether LLM-produced surprisal values predicted human offset response times (ORTs).897

We found that human participants responded earlier to turns with words that TurnGPT found more surprising, contradicting898

Hypothesis 6. To understand these surprising results, we explored individual stimuli. First, since multiple participants899

responded to the same stimulus, we calculated the median ORT for each stimulus. Then, we calculated the z-scores for900

surprisal and ORT. Hypothesis 6 stated that the z-scores for surprisal and median ORT would be similar to each other.901

Below, we present example stimuli where TurnGPT produced a high surprisal, which either did or did not match ORTs.902

Excerpt 1: Low ORT, high surprisal (unexpected pattern)

*SP1: I’d like to meet your girlfriend

*SP2: Sure when

Excerpt 2: High ORT, high surprisal (predicted pattern)

*SP1: I’d like to meet your girlfriend

*SP1: Sure when

Excerpts 1 and 2 come from the same stimulus pair. In both, TurnGPT produced similarly high word surprisal values,903

with z-scores of approximately 2.08. However, median ORT for Excerpt 1 was extremely low, with a z-score of -4.00,904

while ORT for Excerpt 2 was high, with a z-score of 2.78. In Excerpt 1, participants may perceive “Sure" as a sufficient905

response to the first turn. As a result, participants may have indicated the end of the turn after “sure", without waiting to906

hear “when". In contrast, “sure" would not complete the turn in Excerpt 2.907

Excerpt 3: High ORT, low surprisal (unexpected pattern)

*SP1: Where have you been

*SP1: Maybe

Excerpt 4: Low ORT, low surprisal (expected pattern)

*SP1: Do you think you’ll make it to my presentation tomorrow

*SP1: That’s true

In Excerpt 3, median ORT was high (z-score of 3.86) but surprisal was low (z-score of -1.30). This example illustrates908

another phenomenon: participants may have understood “maybe" to project upcoming talk and therefore waited to indicate909

the end of the turn. At the same time, the word “maybe" is a frequent word, resulting in a low surprisal values. In contrast,910

Excerpt 4 had both a low word surprisal (z-score of -1.58) and a low ORT (z-score of -2.36). This may be because “that’s911

true" is a phrase that is both common and typically ends a turn.912
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F | END-OF-TURN BASED SURPRISAL FORMULATION913

In this paper, we investigate whether LLM-produced surprisal values mimic human ORTs. In the main text, we analyzed914

a formulation of surprisal (see Equation 2) based on the predictability of individual words within the turns. We compared915

this word-based surprisal to human-produced ORT (Section 3.4). Humans were asked to predict the end of turn through916

a button press task. ORT is the difference between the actual end of the turn and the moment the participants press917

the button, an indirect measure of the predictability of words in the turn (see Section 2.2). While there is an extensive918

literature to support the relationship between ORT and word predictability, this relationship is indirect. Therefore, in this919

appendix, we report the results of our study when analyzing surprisal based on the predictability of end-of-turn token after920

the second turn. Specifically, Equation 8 builds on the formalism presented in Section 2.2.2 and presents an alternative921

method to capture model surprisal that may more directly link to ORT.922

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 = − log𝑃 (𝑡𝐸𝑂𝑇 ∣ 𝑤2

1,… , 𝑤2
𝑁 , 𝑤1

1,… , 𝑤1
𝐾 ) (8)

This method calculates the probability of the end of turn (EoT) token after all the words in both the first and second923

turns of the two-turn stimulus. LLMs use this EoT token internally to explicitly indicate whether the model believes a turn924

has ended. This method considers the turn as a whole and its completion, addressing potential biases from incomplete925

fragments. To ensure clarity, we refer to our original formulation of surprisal as 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 and the alternative926

formulation as 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. Refer to Appendix A for a comprehensive explanation of the data preprocessing and927

fine-tuning procedures used to train the models for each surprisal method.928

When performing the same RMs on 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 as in Section 3.4, we found very strong evidence for the null929

hypothesis; the data were more likely under the model that did not include 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 as a predictor (𝐵𝐹10 =930

0.03). Surprisal had a near-zero relationship with ORT (𝛽 = 0.01, 95% CI = -0.01 - 0.03).931

Since our analysis of Hypothesis 6 differed on the method used to calculate surprisal (see Equations 2 and 8), we932

now replicate our study based on 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 and present the results below. We find that, while there were some933

differences based on the method used to calculate surprisal, the results point to the same conclusion: LLMs are not able934

to replicate human behavioral data from Warnke (2024).935

F.1 | Effect of Congruence and Speaker936

Similar to our analysis in Section 3.1, we first predict 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 using the same regression Equation 3. We937

hypothesized (Hypothesis 1) that surprisal for the incongruent stimuli would be higher compared to that for congruent938

stimuli.939

We found decisive evidence that the best model included the main effects of speaker and congruence, as well as940

their interaction (𝐵𝐹10 = 1.54e+04). Compared to congruent stimuli, both incongruent (𝛽 = -0.43, 95% CI = -0.73 to941

-0.13) and violative (𝛽 = -0.34, 95% CI = -0.64 to -0.04) stimuli had lower 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. This finding contradicts942

Hypothesis 1. Additionally, stimuli in the same-speaker condition were less surprising (𝛽 = -0.59). Finally, we observed943

interaction effects: within the same-speaker stimuli, both incongruent (𝛽 = 0.88, 95% CI = 0.61 to 1.46) and violative (𝛽944

= 1.04, 95% CI = 0.61 to 1.46) stimuli were more surprising than congruent stimuli, supporting Hypothesis 1.945

Interestingly, the effects of congruence and speaker identity on 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 are almost opposite to their effects946

on 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. While 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 matched Hypothesis 1 in the different-speaker condition but not in947

the same-speaker condition, 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 matched Hypothesis 1 in the same-speaker condition but not in the948
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F I G U R E F 1 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 across congruence and speaker conditions for GPT-2 fine-tuned on twenty-eight

conversations. The results indicate that the model aligns with Hypothesis 1 in the same speaker condition, but not in the different
speaker condition.

different-speaker condition. Despite these differences, neither type of surprisal matched the patterns produced in human949

studies across both speaker conditions.950

One possible explanation for this reversal of results is that the model has different expectations regarding the length951

of the turn, i.e. when it would end, depending on who is speaking. Our stimuli contained very short turns with only one952

or two syllables, whereas the training data contained turns of varying length. It is possible that shorter turns occurred953

less frequently after a speaker switch compared to when the same speaker continued speaking, and that the model was954

therefore more surprised when turns ended, even if they were congruent. Further exploration and analysis is needed to955

investigate this.956

F.2 | Effect of Amount of Fine-tuning957

F I G U R E F 2 EOT Surprisal for the null GPT2, the GPT2 trained on five conversations and the GPT2 trained on
twenty-eight conversations.
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In this section, we replicate the analyses from Section 3.2 and Appendix C to examine how the amount of fine-tuning958

data influences 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. Similar to our findings with 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑊 𝑜𝑟𝑑

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛, we found decisive evidence that the959

data was most accurately modeled by RMs that included all main and interaction effects (See Equation4 and Table 13).960

Regression Model Bayes Factor
Model 7 2.44e+49
Model 8 2.76e+53
Model 9 1.49e+53
Model 10 3.19e+62

TA B L E 1 3 Bayes Factors for regression models (as described in Table 7) investigating the effect of training amount on
𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 patterns. The denominator for the Bayes Factors was the model that contained the baseline model (random
intercept for stimulus group, main effects of congruence and speaker, and an interaction effect between congruence and speaker)
and a main effect for training amount.

Fine-tuning the LLM increased baseline surprisal values: GPT-2 fine-tuned on five or twenty-eight conversations961

produced higher 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 values than the null model. Additionally, training the models resulted in different962

patterns of surprisal based on speaker and congruence conditions. Models trained on five and twenty-eight conversations963

produced lower 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 values for incongruent and violation stimuli compared to congruent stimuli in the964

different-speaker condition.965

As shown by Figure F2, the five-conversation model did show higher baseline 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 than the null model.966

However, the magnitude of this difference is at least three times smaller for 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 than for 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛967

(Section 3.2, Appendix C). Further, while the fine-tuned LLMs showed similar patterns of 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 as the null968

model, fine-tuned models had different results than null models for 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. However, both surprisal measures969

found diminishing returns as the amount of fine-tuning increased, with small, if any differences in the values for the five970

and twenty-eight GPT2 models.971

F.3 | Explicit versus Implicit Speaker Representations972

F I G U R E F 3 EOT Surprisal for the TurnGPT and GPT2 trained on twenty-eight conversations.

In this Section, we replicate the analyses from Section 3.3 and Appendix D i.e., we analyze the effect of speaker973

representations on 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. The results (see Tables 15 and 16) indicate that the data (𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛)974
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Estimate t p
(Intercept) 10.16 (9.82 - 10.50) 58.69 <0.01**
Five 2.09 (1.60 - 2.58) 8.32 <0.01**
Twenty-eight 2.55 (2.06 - 3.04) 10.16 <0.01**
Incongruent 0.55 (0.08 - 1.02) 2.30 0.02*
Violation 1.91 (1.44 - 2.38) 7.97 <0.01**
Same Speaker 0.82 (0.36 - 1.29) 3.44 <0.01**
Five * Incongruent -0.96 (-1.64 - -0.28) -2.74 0.01*
Twenty-eight * Incongruent -0.97 (-1.66 - -0.29) -2.78 0.01*
Five * Violation -2.20 (-2.89 - -1.52) -6.28 <0.01**
Twenty-eight * Violation -2.25 (-2.94 - -1.57) -6.43 <0.01**
Five * Same Speaker -1.25 (-1.94 - -0.57) -3.58 <0.01**
Twenty-eight * Same Speaker -1.41 (-2.09 - -0.72) -4.02 <0.01**
Incongruent * Same Speaker -1.08 (-1.74 - -0.42) -3.19 <0.01**
Violation * Same Speaker -1.68 (-2.35 - -1.02) -4.98 <0.01**
Five * Incongruent * Same Speaker 1.90 (0.93 - 2.87) 3.84 <0.01**
Twenty-eight * Incongruent * Same Speaker 1.94 (0.97 - 2.91) 3.92 <0.01**
Five * Violation * Same Speaker 2.65 (1.68 - 3.61) 5.34 <0.01**
Twenty-eight * Violation * Same Speaker 2.74 (1.77 - 3.70) 5.53 <0.01**

TA B L E 1 4 Coefficients for frequentist regression including all two- and three-way interactions. 95% confidence intervals
presented in parentheses. * = p-value under 0.05, ** = p-value under 0.01.

were most likely under the regression model (RM) that included all main and interaction effects (see 5). We found decisive975

evidence that this model was more likely than the next best RM (𝐵𝐹10 = 500). TurnGPT produced lower surprisal976

values (𝛽 = -12.15, 95% CI = -12.49 to -11.81) compared to GPT-2. Furthermore, the relationship between surprisal and977

congruence condition depended on the type of speaker representations. Specifically, for TurnGPT, the incongruent (𝛽978

= 0.64, 95% CI = 0.17 to 1.12) and violation (𝛽 = 0.52, 95% CI = 0.05 to 1.00) conditions had even higher surprisal979

compared to the congruent condition. Additionally, 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 values were also higher in the same-speaker980

condition for TurnGPT.981

Surprisal was lower for TurnGPT than for GPT-2, regardless of the method of calculating surprisal. However, we982

found that the pattern of surprisal across conditions differed between TurnGPT and GPT-2 – but only when analyz-983

ing 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. This may be due to GPT-2 producing different patterns when producing 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛984

and 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. For the different-speaker condition, GPT-2 found the incongruent condition to have higher985

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛, but lower 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 than the congruent condition. For the same-speaker condition, GPT-2986

found the opposite: the incongruent condition had lower 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛, but higher 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. However,987

future research is needed to more deeply understand the root causes of these differences.988
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Regression Model Bayes Factor
Model 12 0.48
Model 13 0.18
Model 14 0.08
Model 15 582.71

TA B L E 1 5 Bayes Factors for regression models (described in Table 10) investigating the effect of embedding type
(TurnGPT vs. GPT-2 embedding) on surprisal patterns. The data were so unlikely under the null model (that did not contain
model type as a predictor) that the resulting Bayes Factors were too large to compute. Therefore, the denominator for these Bayes
Factors is the model that contained the baseline model (random intercept for stimulus group, main effects of congruence and
speaker, and an interaction effect between congruence and speaker) and a main effect for model type (Model 11 in Table 10).

Estimate t p
(Intercept) 12.72 (12.46 - 12.98) 95.37 <0.01**
TurnGPT -12.15 (-12.49 - -11.81) -70.13 <0.01**
Incongruent -0.45 (-0.79 - -0.10) -2.52 0.01*
Violative -0.36 (-0.70 - -0.01) -2.03 0.04*
Same Speaker -0.60 (-0.94 - -0.26) -3.40 <0.01**
TurnGPT * Incongruent 0.64 (0.17 - 1.11) 2.65 0.01*
TurnGPT * Violation 0.52 (0.05 - 0.99) 2.15 0.03*
TurnGPT * Same Speaker 0.95 (0.48 - 1.43) 3.95 <0.01**
Incongruent * Same Speaker 0.91 (0.43 - 1.40) 3.65 <0.01**
Violation * Same Speaker 1.07 (0.58 - 1.55) 4.28 <0.01**
TurnGPT * Incongruent * Same Speaker -1.36 (-2.03 - -0.70) -3.98 <0.01**
TurnGPT * Violation * Same Speaker -1.18 (-1.85 - -0.51) -3.45 <0.01**

TA B L E 1 6 Results for most complex regression model analyzing how speaker representations predict 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛

(Model 15 in Table 10). 95% confidence intervals presented in parentheses. * = p-value under 0.05, ** = p-value under 0.01.

F.4 | Analysis of Individual Stimuli989

When performing the same RMs as in Section 3.4 on 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛, we found very strong evidence for the null990

hypothesis, that the data were more likely under the model that did not include 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 as a predictor. To991

generate potential hypotheses to explain this finding, we present the same analysis of individual stimuli as in Appendix E,992

but based on the 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛. Specifically, we examined stimuli where 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 z-scores were opposite993

of median ORT z-scores. Stimuli that matched Hypothesis 6 had 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 z-scores in the same direction and994

magnitude as its ORT.995

First, we explored stimuli that did not match our hypothesis. In Excerpt 5, TurnGPT produced a high𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛,996

but human produced low ORTs. In Excerpt 6, TurnGPT produced a low 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛, but ORTs were high.997

In Excerpt 7, both𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 (z-score of 3.96) and ORT (z-score of 3.85) were high, while𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛998
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Excerpt 5: Low ORT, high 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 (unexpected pattern)

*SP1: I got you a present

*SP2: Stay safe

Excerpt 6: High ORT, low 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 (unexpected pattern)

*SP1: Do you mind helping with my homework

*SP2: Please

Excerpt 7: High ORT, high 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 (expected pattern)

*SP1: Where have you been

*SP1: Maybe

Excerpt 8: Low ORT, low 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 (expected pattern)

*SP1: Where have you been

*SP2: Nowhere

(z-score of -1.29) was low. In Excerpt 8, both 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 (z-score of -0.49) and ORT (z-score of -0.96) were999

somewhat lower, while 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 was above average (z-score of 0.59). Exactly why 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝐸𝑜𝑇

𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛 differs1000

from 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙𝑤𝑜𝑟𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑇 𝑢𝑟𝑛, and exactly when each measure corresponds with human ORT, is still unclear and should be1001

investigated in future work.1002
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